Dec
23
Here’s a Pretty Kettle of Fish, from Victor Niederhoffer
December 23, 2014 |
Here's a pretty kettle of fish. Suppose you have two forecasts that are disparate. One is bullish and the other is bearish. For example it's up 100 over 4 days. That's bearish. But it's up 4 days in a row, that's bullish. How to combine? There's a bayesian approach, a regression approach, and an inverse variance weighted approach, and a practical approach that Zarnowitz found. Just add up the number of bullish and bearish and that's your forecast. But what's your best way of solving same? The answer might provide a meal for a lifetime. I asked Stigler this question 15 years ago, and he thought it was a very good question, and I've not seen a good answer yet.
Alex Castaldo writes:
I would start with Diebold and Pauly: The use of prior information in forecast combination.
Gary Rogan writes:
There has got to be some way of incorporating the rare nature of one of the set of circumstances. Clearly 100 points is more unique than 4 days. Does this carry any special weight? Also there is a very large number of other possible "circumstances", like time of day, month, year, what the future portends if prior history was similar during this time of day, month, year. where are we in the economic cycle? With respect to various moving averages? What's the money supply and it's history? What has the price of oil and any number of other thing doing and where is it? And what matters more: all these other things or the one unique thing?
anonymous writes:
You're mixing apples and oranges. The premise for regression and related approaches is that there is a fixed law that can be discerned, or at least modeled, in such a way that it does not vary in any dimension. Whatever the model/rule was 50 years ago is still what it is today—unless of course, additional information either disproves the model or allows for its refinement. Either way, it's time invariant. Bayesian analyses are different by definition. Unless the prior is the same, the result will be different. Since priors will change with the passage of time, the analysis is time-dependent. You might try to specify the Bayesian model as fixed at any one point in time and try some form of combination, but since the moment you do that, the prior will shift and the exercise becomes worthless.
Comments
1 Comment so far
Archives
- January 2026
- December 2025
- November 2025
- October 2025
- September 2025
- August 2025
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- Older Archives
Resources & Links
- The Letters Prize
- Pre-2007 Victor Niederhoffer Posts
- Vic’s NYC Junto
- Reading List
- Programming in 60 Seconds
- The Objectivist Center
- Foundation for Economic Education
- Tigerchess
- Dick Sears' G.T. Index
- Pre-2007 Daily Speculations
- Laurel & Vics' Worldly Investor Articles
I found about 10 models, sufficiently different, that worked well trading a particular asset. They have conflicting signals often. I am not willing to pick which one will work so I just create a composite and add the number of positive components to the number of negative ones and formulate an exposure ratio.
The method is to increase or decrease the exposure on signals rather than to go all in or out on the best signal. The result is that one is rarely all in on the best or worst signal.
If one were to trade only the best signal from the last x periods, one would have to optimize it to keep it the best over any length of time.
Therefore composites are better, to my view, unless you can put your finger on why one signal has worked best in the past and think it will maintain that status.
If you go long only the asset, then you may fail to beat your benchmark in the best straight up return path years. If you go long and short you look like a genius in years in which prices oscillate according to plan or go nowhere.
The risk control granted by the composite score model is favored by me know. Add in a leverage factor and one changes the mathematics to a risk control with higher maximum gains if the models work and with the chance of beating a benchmark.
So versus a benchmark, in the case of oscillating prices, one can win. If prices go up one is levered and can win and if prices drop one can also win.
The leverage makes it interesting to have conflicting models that determine the exposure.