Sep
4
Article on Information Theory, shared by Steve Ellison
September 4, 2010 |
Here is a very interesting article I found on Information Theory:
Excerpts:
The noisier the channel, the more extra information must be added to make error correction possible. And the more extra information is included, the slower the transmission will be. [Claude] Shannon showed how to calculate the smallest number of extra bits that could guarantee minimal error–and, thus, the highest rate at which error-free data transmission is possible. But he couldn't say what a practical coding scheme might look like.
Researchers spent 45 years searching for one. Finally, in 1993, a pair of French engineers announced a set of codes–"turbo codes"–that achieved data rates close to Shannon's theoretical limit. The initial reaction was incredulity, but subsequent investigation validated the researchers' claims. It also turned up an even more startling fact: codes every bit as good as turbo codes, which even relied on the same type of mathematical trick, had been introduced more than 30 years earlier, in the MIT doctoral dissertation of Robert Gallager, SM '57, ScD '60. After decades of neglect, Gallager's codes have finally found practical application. They are used in the transmission of satellite TV and wireless data, and chips dedicated to decoding them can be found in commercial cell phones.
—-
The codes that Gallager presented in his 1960 doctoral thesis (http://www.rle.mit.edu/rgallager/documents/ldpc.pdf) were an attempt to preserve some of the randomness of Shannon's hypothetical system without sacrificing decoding efficiency. Like many earlier codes, Gallager's used so-called parity bits, which indicate whether some other group of bits have even or odd sums. But earlier codes generated the parity bits in a systematic fashion: the first parity bit might indicate whether the sum of message bits one through three was even; the next parity bit might do the same for message bits two through four, the third for bits three through five, and so on. In Gallager's codes, by contrast, the correlation between parity bits and message bits was random: the first parity bit might describe, say, the sum of message bits 4, 27, and 83; the next might do the same for message bits 19, 42, and 65.
Gallager was able to demonstrate mathematically that for long messages, his "pseudo-random" codes were capacity-approaching. "Except that we knew other things that were capacity-approaching also," he says. "It was never a question of which codes were good. It was always a question of what kinds of decoding algorithms you could devise."
That was where Gallager made his breakthrough. His codes used iterative decoding, meaning that the decoder would pass through the data several times, making increasingly refined guesses about the identity of each bit. If, for example, the parity bits described triplets of bits, then reliable information about any two bits might convey information about a third. Gallager's iterative-decoding algorithm is the one most commonly used today, not only to decode his own codes but, frequently, to decode turbo codes as well. It has also found application in the type of statistical reasoning used in many artificial-intelligence systems.
"Iterative techniques involve making a first guess of what a received bit might be and giving it a weight according to how reliable it is," says [David] Forney. "Then maybe you get more information about it because it's involved in parity checks with other bits, and so that gives you an improved estimate of its reliability." Ultimately, Forney says, the guesses should converge toward a consistent interpretation of all the bits in the message.
Jim Sogi writes:
I think that is why many market price moves come in threes as an error correction devise. Like the recent triple bottom.
Jon Longtin writes:
Very interesting articles on the history of encoding schemes.
One interesting thing to note is that if you take even a simple information stream and encode it with any of the numerous algorithms available, the encoded version of the information is typically unintelligible to use as humans in any way, shape, or form.
‘hotdog’ for example, might encode to ‘b$7FQ1!0PrUfR%gPeTr:$d’
These encoding algorithms work by rearranging the bits of the original word, looking for patterns, and applying mathematical operators on the bit stream.
Many of the financial indicators and short-term predicative tools that abound today are based on some combination of the prior price history, but often in a relatively simplistic way. For example, although the weightings may change for various averages, their time sequence, i.e. the order in which they are recorded and analyzed is the same: a sequence of several prices over some period is analyzed in the same order in which it was created.
Perhaps, however, there is some form of intrinsic encoding that is going in the final price history of an instrument. For example, it could be reasoned that news and information does not propagate at a uniform rate, or that different decision makers will wait a different amount of time before reacting to a price change or news. The result might be that the final price history that actually results, and that everyone sees and acts upon, is encoded somehow based on simpler, more predictable events, but the encoding obfuscates those trends in the final price history.
Maybe it is no coincidence that Jim Simons of Renaissance Technologies did code breaking for the NSA early on in his career.
Unfortunately reverse-engineering good hashing codes, particularly those designed to obfuscate, such as security and encryption algorithms are notoriously difficult to crack. (The encrypted password file on Unix machines was, for many years, freely visible to all users on the machine because it would simply have taken too long to crack for machines of the time.) On the other hand, the cracking algorithms often require little knowledge of the original encoding scheme, instead simply taking a brute force approach. Thus if there were such an underlying encoding happening with financial instruments—and the encoding might be unique for each instrument—then perhaps there is some sliver of hope that it might be unearthed, given time, a powerful machine, and some clever sleuths.
For all I know this has been explored ad nauseum both academically and practically, but it does get one wondering …
Comments
Archives
- January 2026
- December 2025
- November 2025
- October 2025
- September 2025
- August 2025
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- Older Archives
Resources & Links
- The Letters Prize
- Pre-2007 Victor Niederhoffer Posts
- Vic’s NYC Junto
- Reading List
- Programming in 60 Seconds
- The Objectivist Center
- Foundation for Economic Education
- Tigerchess
- Dick Sears' G.T. Index
- Pre-2007 Daily Speculations
- Laurel & Vics' Worldly Investor Articles