Aug
14
Sorry Mr O’Neil, from Bill Rafter
August 14, 2006 |
Investors can certainly use a sector rotation strategy to produce returns which outperform the market, or even some hedge funds. Many hedge funds would be wise to consider such a strategy. However it’s not as easy as the plan described in this article’s abstract. Nor should we expect it to be; the market is not easy-pickings. But recognize what market returns we are talking about: since say 1990, the S&P has had about an 8 pct compounded annual rate of return, while experiencing about a 46 pct maximum drawdown. Those numbers can be beaten, and not just by the pros. As with any game, being an informed participant enhances your success. Without getting too far into proprietary methodologies, let me provide some insight as to what a sector rotator must consider (with a few tips included):Is the investor going to be fully invested all the time, or does he have an escape? That is, should the first set of sectors be equities vs. treasuries. Let’s call that a strategic overlay, or the first on-off switch. Then is the investment going to be long-only, long with a hedge, or long-short?
Next comes the equities universe. What group are you considering: 10 S&P economy sectors, the 64 S&P industry sectors (GICs), high liquidity ETFs of economic sectors, country ETFs, Fidelity funds, Dow Jones 18 European sectors, or small cap funds accepting new money. The list can be endless. We have rotated all of the above, and can attest that the hardest of the lot is the 10 S&P economy sectors. We would not even consider rotating a list of just four sectors, as was done in the referenced article.
Once you have chosen your universe, you have to pick an out-of-sample period and run cross correlations on the assets. The cross correlations should not be on the levels or changes, but on the scoring that you will eventually use. Your purpose here is to reduce the likelihood of always being in the same combinations of assets. You wouldn’t mind doing so if they were all moving up together, but the opposite would destroy you, and must be avoided. This is the only subjective part of the entire process: you will personally have to decide the level of cross correlation you will accept. You can of course test this also, but there will be obvious breakpoints that make sense to the experienced researcher. Thus if you start out with the 64 GICs, cross correlation may reduce that number down to about half. This should be done blind. Also, some of the 64 have only one stock, and you may want to eliminate such a sector.
The choice of ranking or scoring device is the most critical part of the entire process. Most of the industry professionals we know use a “quarterly” rate of change or relative strength calculation. For example, we have been told that R***x uses a moving 63-day rate of change for their sector rotation fund on the 64 GICs culled down to 56. They have passable results which outperform the market, and several hundred million in that fund alone. The problem with either moving rate of change or relative strength is that those calculations produce fairly erratic scores. They can be improved by some slight smoothing prior to ranking, or by skipping days (e.g. scoring and ranking every other day), but your task is to find what works best. We have done some work with counting as a ranking device, but our experience is that using counting works best only if we choose to be particularly risk-averse in a long-only program. Oh, and don’t assume that a ranking/scoring device is just one indicator, as combinations work best.
The best ranking device we have found absolutely knocks the cover off the ball, but it is not obvious. Although it is very robust and clearly non-random, we don’t yet understand why it works, and are reluctant to use it until we do.
Should the sectors be risk-adjusted? If telecoms and utilities have equal rankings on a given day, do you want to discriminate in favor of the least volatile, say by subtracting half a moving standard deviation? Our results show that doing so on sectors reduces both returns and drawdowns. That’s unexpected, as usually reducing drawdowns and increasing returns are handmaidens. However if you are ranking proprietary funds, risk-adjusting outperforms not doing so across the board. That is, penalizing managers for bad behavior really works. This suggests that (a) certain managers really have talent and fat tails, and (b) they can be discovered by some quant work.
Then comes the question as to how many assets out of our population are going to be traded. This can be tested empirically. R****x commissioned a white paper which suggested that 3-5 sectors was optimal. Yet R****x uses 8 out of their 64-culled-to-56, probably for marketing reasons (so we’ve been told). Our results show that whatever number you pick, numbers in that vicinity work well too, so it’s robust. We generally recommend using at least 3 assets to reduce volatility. But using more than 10 percent of the population curtails returns. Some of the professionals we have spoken with have told us that their “second quadrant” outperforms their “first quadrant”. Should that happen to you, you need to do more work at finding a better scoring method.
However many assets you choose to hold, add an equal number of money-market assets. That is, if you choose to buy 3 assets, then to your culled population, add another 3 assets, all consisting of money-market. Then rank the whole lot. If your top 3 assets are X, Y, and money market, then buy that mix. If an equity asset cannot outperform money-market, don’t buy it. This means you will have to construct an asset consisting of the compounded effect of money-market, which is a great thing to have in your toolbox anyway. Some professionals do not like holding money-market assets in a client’s portfolio for marketing reasons. If a client sees a large portion of his assets in cash, he’s inclined to find something else (usually wrong) to buy with it. There are also some programs that rank say 15 assets side-by-side with 15 money-markets. Then if the market tanks, you will probably be in mostly cash before that happens. That is a fairly conservative way to go, usually producing acceptable, albeit low, returns, but with very low drawdowns. Risk-averse types take notice.
How frequently do you look to change the assets? Recasting the investments everyday is not typically the best choice (as you will choose a lot of one-day-wonders), but there is a sweet spot that is robust. Interestingly, on some programs, recasting as infrequently as monthly isn’t all that bad. That is, it still beats the S&P hands down, and a whole lot of hedge funds to boot.
A variation on the question as to how many assets to hold, is the percentage allocation among those held assets. Equally weighting the allocations may be the first choice to consider, but it is certainly not the last. Then you have to deal with rebalancing the equity among the assets and the frequency of that rebalancing. The academic literature just on the frequency of rebalancing is quite substantial.
If you consider a hedged strategy, you have to choose whether you are going to hedge initial equity only (never readjusted for equity changes), a full hedge (adjusted daily for all changes), or somewhere in-between. The frequency of hedging is also a variable that should be tested. Upon doing so you will also find a sweet spot that is robust. Readjusting the hedge can also be subject to an on-off switch. That is, if your strategic overlay says that equities look weak, the switch forces you to go to a fully hedged condition from less so.
What is best depends on the yardstick used by the investor. The investor may seek to maximize returns, minimize drawdowns, maximize the ratio of the two, or some other statistic. Success is achievable. For example, it is certainly possible to create a program in which the compound annual rate of return exceeds twice the maximum drawdown, or with a Sharpe Ratio north of 2.
Given all of the degrees of freedom discussed above, it would certainly be naive to expect a simple four-sector program chosen on the basis of relative strength to produce hedge fund returns. It is wrong for the abstract to imply that investment success cannot be achieved. However, the author is right in that the typical investor cannot use such a simple strategy to produce superior performance. But that’s not because it cannot be done. Rather it’s because the typical investor is not up to the task of doing the research necessary.
Comments
Archives
- January 2026
- December 2025
- November 2025
- October 2025
- September 2025
- August 2025
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- Older Archives
Resources & Links
- The Letters Prize
- Pre-2007 Victor Niederhoffer Posts
- Vic’s NYC Junto
- Reading List
- Programming in 60 Seconds
- The Objectivist Center
- Foundation for Economic Education
- Tigerchess
- Dick Sears' G.T. Index
- Pre-2007 Daily Speculations
- Laurel & Vics' Worldly Investor Articles